Scalable design rules for heterogeneous networks
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
We derive robust, decentralised and scalable stability criteria for networks of heterogeneous systems. Stability of the network is guaranteed if the dynamics of each local area of the network satisfies a globally specified protocol. The results are suitable for a broad class of network models, allowing for interconnection asymmetries, multi-input-multi-output systems and nonlinearities. For networks of single-input-single-output systems with a bipartite interconnection structure the protocol takes the form of a graphical Nyquist type test. This allows local control systems to be designed using loopshaping techniques. In the general setting the protocol take the form of a frequency domain inequality, and design can be conducted using linear matrix inequalities. Vve apply the techniques to construct a protocol for networks of detailed synchronous machine models. This illustrates that the conditions can be used for scalable stability verification and design of high fidelity electrical power system models.
Description
This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: thesis@repository.cam.ac.uk.
Cambridge University Library can make a copy of this work available only for the purposes of private study and non-commercial research. Copies should not be shared or saved in any shared facilities. Copyright over the content of these works is with their authors. Theses from the Library collection are considered unpublished works and according to UK legislation quoting from them is not allowed without permission from their author.
If you can commit to these terms, please complete the request form which you can find through this link: https://imagingservices.lib.cam.ac.uk/
Please note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archives