Stable Hexylphosphonate-Capped Blue-Emitting Quantum-Confined CsPbBr3 Nanoplatelets.
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Quantum-confined CsPbBr3 nanoplatelets (NPLs) are extremely promising for use in low-cost blue light-emitting diodes, but their tendency to coalesce in both solution and film form, particularly under operating device conditions with injected charge-carriers, is hindering their adoption. We show that employing a short hexyl-phosphonate ligand (C6H15O3P) in a heat-up colloidal approach for pure, blue-emitting quantum-confined CsPbBr3 NPLs significantly suppresses these coalescence phenomena compared to particles capped with the typical oleyammonium ligands. The phosphonate-passivated NPL thin films exhibit photoluminescence quantum yields of ∼40% at 450 nm with exceptional ambient and thermal stability. The color purity is preserved even under continuous photoexcitation of carriers equivalent to LED current densities of ∼3.5 A/cm2. 13C, 133Cs, and 31P solid-state MAS NMR reveal the presence of phosphonate on the surface. Density functional theory calculations suggest that the enhanced stability is due to the stronger binding affinity of the phosphonate ligand compared to the ammonium ligand.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2380-8195
Volume Title
Publisher
Publisher DOI
Sponsorship
Royal Society (UF150033)
European Research Council (756962)
Engineering and Physical Sciences Research Council (EP/R023980/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (841386)
European Commission Horizon 2020 (H2020) ERC (835073)