Repository logo
 

Research data supporting 'On the origin of the circular hydraulic jump in a thin liquid film'

datacite.contributor.supervisorBhagat, Rajesh Kumar
datacite.issupplementto.doi10.1017/jfm.2018.558
datacite.issupplementto.urlhttps://www.repository.cam.ac.uk/handle/1810/284149
dc.contributor.authorBhagat, RK
dc.contributor.authorWilson, D Ian
dc.contributor.authorLinden, Paul
dc.contributor.authorJha, NK
dc.contributor.orcidBhagat, Rajesh [0000-0002-8928-4534]
dc.contributor.orcidWilson, Ian [0000-0003-3950-9165]
dc.contributor.orcidLinden, Paul [0000-0002-8511-2241]
dc.date.accessioned2022-04-07T16:13:23Z
dc.date.available2022-04-07T16:13:23Z
dc.descriptionThe file contains research data from the published article. Article abstract in: Bhagat, R., Jha, N., Linden, P., & Wilson, D. (2018). On the origin of the circular hydraulic jump in a thin liquid film. Journal of Fluid Mechanics, 851, R5. doi:10.1017/jfm.2018.558 -- "For more than a century, it has been believed that all hydraulic jumps are created due to gravity. However, we found that thin-film hydraulic jumps are not induced by gravity. This study explores the initiation of thin-film hydraulic jumps. For circular jumps produced by the normal impingement of a jet onto a solid surface, we found that the jump is formed when surface tension and viscous forces balance the momentum in the film and gravity plays no significant role. Experiments show no dependence on the orientation of the surface and a scaling relation balancing viscous forces and surface tension collapses the experimental data. Experiments on thin film planar jumps in a channel also show that the predominant balance is with surface tension, although for the thickness of the films we studied gravity also played a role in the jump formation. A theoretical analysis shows that the downstream transport of surface tension energy is the previously neglected, critical ingredient in these flows and that capillary waves play the role of gravity waves in a traditional jump in demarcating the transition from the supercritical to subcritical flow associated with these jumps".
dc.description.sponsorshipThe Commonwealth Scholarship Commission
dc.formatOrigin graph
dc.identifier.doi10.17863/CAM.25933
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/335883
dc.rightsAttribution 4.0 International (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectHydraulic jump
dc.subjectInterfacial flow
dc.subjectThin film
dc.titleResearch data supporting 'On the origin of the circular hydraulic jump in a thin liquid film'
dc.typeDataset
dcterms.format.opj
dcterms.relationhttps://arxiv.org/ftp/arxiv/papers/1712/1712.04255.pdf
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
rioxxterms.typeOther

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hydraulic_jump_data.opj
Size:
263.76 KB
Format:
Unknown data format
Licence
https://creativecommons.org/licenses/by/4.0/
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DepositLicenceAgreement.pdf
Size:
417.78 KB
Format:
Adobe Portable Document Format