Repository logo
 

Human Stiffness Perception and Learning in Interacting With Compliant Environments.

cam.issuedOnline2022-06-06
dc.contributor.authorTakahashi, Chie
dc.contributor.authorAzad, Morteza
dc.contributor.authorRajasekaran, Vijaykumar
dc.contributor.authorBabič, Jan
dc.contributor.authorMistry, Michael
dc.date.accessioned2022-06-29T19:44:07Z
dc.date.available2022-06-29T19:44:07Z
dc.date.issued2022
dc.date.submitted2021-12-22
dc.date.updated2022-06-29T19:44:06Z
dc.description.abstractHumans are capable of adjusting their posture stably when interacting with a compliant surface. Their whole-body motion can be modulated in order to respond to the environment and reach to a stable state. In perceiving an uncertain external force, humans repetitively push it and learn how to produce a stable state. Research in human motor control has led to the hypothesis that the central nervous system integrates an internal model with sensory feedback in order to generate accurate movements. However, how the brain understands external force through exploration movements, and how humans accurately estimate a force from their experience of the force, is yet to be fully understood. To address these questions, we tested human behaviour in different stiffness profiles even though the force at the goal was the same. We generated one linear and two non-linear stiffness profiles, which required the same force at the target but different forces half-way to the target; we then measured the differences in the learning performance at the target and the differences in perception at the half-way point. Human subjects learned the stiffness profile through repetitive movements in reaching the target, and then indicated their estimation of half of the target value (position and force separately). This experimental design enabled us to probe how perception of the force experienced in different profiles affects the participants' estimations. We observed that the early parts of the learning curves were different for the three stiffness profiles. Secondly, the position estimates were accurate independent of the stiffness profile. The estimation in position was most likely influenced by the external environment rather than the profile itself. Interestingly, although visual information about the target had a large influence, we observed significant differences in accuracy of force estimation according to the stiffness profile.
dc.identifier.doi10.17863/CAM.85883
dc.identifier.eissn1662-453X
dc.identifier.issn1662-4548
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338470
dc.languageen
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.publisher.urlhttp://dx.doi.org/10.3389/fnins.2022.841901
dc.subjectforce perception
dc.subjectlearning
dc.subjectperceptual decision
dc.subjectsensorimotor prediction
dc.subjectstiffness perception
dc.subjectvisuomotor control
dc.titleHuman Stiffness Perception and Learning in Interacting With Compliant Environments.
dc.typeArticle
dcterms.dateAccepted2022-04-19
prism.publicationNameFront Neurosci
prism.volume16
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
rioxxterms.versionVoR
rioxxterms.versionofrecord10.3389/fnins.2022.841901

Files

Original bundle
Now showing 1 - 3 of 3
No Thumbnail Available
Name:
additional-files.zip
Size:
1.14 MB
Format:
ZIP file
Description:
Supporting information
Licence
http://creativecommons.org/licenses/by/4.0/
No Thumbnail Available
Name:
fnins-16-841901.xml
Size:
102.83 KB
Format:
Extensible Markup Language
Description:
Bibliographic metadata
Licence
http://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name:
fnins-16-841901.pdf
Size:
4.01 MB
Format:
Adobe Portable Document Format
Description:
Published version
Licence
http://creativecommons.org/licenses/by/4.0/