Repository logo

Experimental demonstration of confidential communication with quantum security monitoring

Published version

Change log


Gong, Yupeng 
Hunt, Jeffrey 
White, Ian 


Security issues and attack management of optical communication have come increasingly important. Quantum techniques are explored to secure or protect classical communication. In this paper, we present a method for in-service optical physical layer security monitoring that has vacuum-noise level sensitivity without classical security loopholes. This quantum-based method of eavesdropping detection, similar to that used in conventional pilot tone systems, is achieved by sending quantum signals, here comprised of continuous variable quantum states, i.e. weak coherent states modulated at the quantum level. An experimental demonstration of attack detection using the technique was presented for an ideal fibre tapping attack that taps 1% of the ongoing light in a 10dB channel, and also an ideal correlated jamming attack in the same channel that maintains the light power with excess noise increased by 0.5 shot noise unit. The quantum monitoring system monitors suspicious changes in the quantum signal with the help of advanced data processing algorithms. In addition, unlike the CV-QKD system which is very sensitive to channel excess noise and receiver system noise, the quantum monitoring is potentially more compatible with current optical infrastructure, as it lowers the system requirements and potentially allows much higher classical data rate communication with links length up to 100s km.



5108 Quantum Physics, 40 Engineering, 4009 Electronics, Sensors and Digital Hardware, 51 Physical Sciences, 5102 Atomic, Molecular and Optical Physics

Journal Title

Scientific Reports

Conference Name

Journal ISSN


Volume Title



Nature Publishing Group


All rights reserved
EPSRC (via University of York) (EP/T001011/1)
EPSRC (via University College London (UCL)) (EP/S028854/1)
Is supplemented by: