Thermostable in vitro transcription-translation compatible with microfluidic droplets.
Published version
Peer-reviewed
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
BACKGROUND: In vitro expression involves the utilization of the cellular transcription and translation machinery in an acellular context to produce one or more proteins of interest and has found widespread application in synthetic biology and in pharmaceutical biomanufacturing. Most in vitro expression systems available are active at moderate temperatures, but to screen large libraries of natural or artificial genetic diversity for highly thermostable enzymes or enzyme variants, it is instrumental to enable protein synthesis at high temperatures. OBJECTIVES: Develop an in vitro expression system operating at high temperatures compatible with enzymatic assays and with technologies that enable ultrahigh-throughput protein expression in reduced volumes, such as microfluidic water-in-oil (w/o) droplets. RESULTS: We produced cell-free extracts from Thermus thermophilus for in vitro translation including thermostable enzymatic cascades for energy regeneration and a moderately thermostable RNA polymerase for transcription, which ultimately limited the temperature of protein synthesis. The yield was comparable or superior to other thermostable in vitro expression systems, while the preparation procedure is much simpler and can be suited to different Thermus thermophilus strains. Furthermore, these extracts have enabled in vitro expression in microfluidic droplets at high temperatures for the first time. CONCLUSIONS: Cell-free extracts from Thermus thermophilus represent a simpler alternative to heavily optimized or pure component thermostable in vitro expression systems. Moreover, due to their compatibility with droplet microfluidics and enzyme assays at high temperatures, the reported system represents a convenient gateway for enzyme screening at higher temperatures with ultrahigh-throughput.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1475-2859
Volume Title
Publisher
Publisher DOI
Sponsorship
Ministerio de Ciencia e Innovación (BIO-2013-44963-R, RED2022-134755-T, CEX2021-001154-S, BIO-2013-44963-R, RED2022-134755-T, CEX2021-001154-S)