Differential cohomology and topological actions in physics
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
We use differential cohomology to systematically construct a large class of topological actions in physics, including Chern-Simons terms, Wess-Zumino-Novikov-Witten terms, and theta terms (continuous or discrete). We introduce a notion of invariant differential cohomology and use it to describe theories with global symmetries and we use equivariant differential cohomology to describe theories with gauge symmetries. There is a natural map from equivariant to invariant differential cohomology whose failure to surject detects 't Hooft anomalies, i.e. global symmetries which cannot be gauged. We describe a number of simple examples from quantum mechanics, such as a rigid body or an electric charge coupled to a magnetic monopole. We also describe examples of sigma models, such as those describing non-abelian bosonization in two dimensions, for which we offer an intrinsically bosonic description of the mod-2-valued 't Hooft anomaly that is traditionally seen by passing to the dual theory of Majorana fermions. Along the way, we describe a smooth structure on equivariant differential cohomology and prove various exactness and splitting properties that help with the characterization of both the equivariant and invariant theories.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1095-0753
Volume Title
Publisher
Publisher DOI
Sponsorship
Leverhulme Trust (PLP-2017-017)