Repository logo
 

Organic Carbon Monoxide Prodrugs Activated by Endogenous Reactive Oxygen Species for Targeted Delivery

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Carbon monoxide (CO) has demonstrated therapeutic benefits in reactive oxygen species (ROS)-rich environments, such as inflammation and cancer. However, the targeted delivery of CO remains challenging, limiting its clinical application and necessitating the development of improved CO-prodrugs. Herein, we report a radical-activated, metal-free, CO-prodrug designed to address delivery limitations and avoid metal-associated toxicity. This tertiary aldehyde-based prodrug is stable under physiological conditions and, upon activation by a radical trigger, releases CO, 2-ethyl-1-butene, and a nontoxic thiol carrier. The stability of the CO-prodrug building block allows for its incorporation into synthetic peptides via solid-phase peptide synthesis and site-specific bioconjugation to therapeutic antibodies. We synthesized trastuzumab conjugates with a CO-prodrug-to-antibody ratio of 23 and demonstrated efficient, tumor-specific CO release in HER2-high-expressing cells. These findings open new avenues for investigating the therapeutic effects of CO. We anticipate that our metal-free CO-prodrug strategy will be broadly applicable to a wide range of synthetic peptide- and protein-based therapeutics.

Description

Journal Title

Journal of the American Chemical Society

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

Publisher

American Chemical Society (ACS)

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
EPSRC DTP iCASE Conversion Studentship (2608239). MCIN/AEI/10.13039/501100011033 (grants PID2021-125946OB-I00, CEX2021-001136-S)