The computational foundations of dynamic coding in working memory.
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Working memory (WM) is a fundamental aspect of cognition. WM maintenance is classically thought to rely on stable patterns of neural activities. However, recent evidence shows that neural population activities during WM maintenance undergo dynamic variations before settling into a stable pattern. Although this has been difficult to explain theoretically, neural network models optimized for WM typically also exhibit such dynamics. Here, we examine stable versus dynamic coding in neural data, classical models, and task-optimized networks. We review principled mathematical reasons for why classical models do not, while task-optimized models naturally do exhibit dynamic coding. We suggest an update to our understanding of WM maintenance, in which dynamic coding is a fundamental computational feature rather than an epiphenomenon.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1879-307X
Volume Title
Publisher
Publisher DOI
Sponsorship
Human Frontier Science Program (HFSP) (RGP0044/2018)
Wellcome Trust (215909/Z/19/Z)
MRC (MC_UU_00030/7)