Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section.

Change log
Loussert-Fonta, Céline  ORCID logo
Toullec, Gaëlle 
Paraecattil, Arun Aby 
Jeangros, Quentin 

Correlative light and electron microscopy allows localization of specific molecules at the ultrastructural level in biological tissue but does not provide information about metabolic turnover or the distribution of labile molecules, such as micronutrients. We present a method to directly correlate (immuno)fluorescent microscopy, (immuno)TEM imaging and NanoSIMS isotopic mapping of the same tissue section, with nanometer-scale spatial precision. The process involves chemical fixation of the tissue, cryo sectioning, thawing, and air-drying under a thin film of polyvinyl alcohol. It permits to effectively retain labile compounds and strongly increases NanoSIMS sensitivity for 13C-enrichment. The method is illustrated here with correlated distribution maps of a carbonic anhydrase enzyme isotype, β-tubulin proteins, and 13C- and 15N-labeled labile micronutrients (and their anabolic derivates) within the tissue of a reef-building symbiotic coral. This broadly applicable workflow expands the wealth of information that can be obtained from multi-modal, sub-cellular observation of biological tissue.

Animals, Anthozoa, Carbon Radioisotopes, Image Processing, Computer-Assisted, Microscopy, Electron, Microscopy, Electron, Scanning Transmission, Microscopy, Fluorescence, Nitrogen Radioisotopes
Journal Title
Commun Biol
Conference Name
Journal ISSN
Volume Title
Springer Science and Business Media LLC