Repository logo
 

Optical suppression of energy barriers in single molecule-metal binding.

cam.depositDate2022-04-25
cam.issuedOnline2022-06-24
datacite.issupplementedby.urlhttps://doi.org/10.17863/CAM.83932
dc.contributor.authorLin, Qianqi
dc.contributor.authorHu, Shu
dc.contributor.authorFöldes, Tamás
dc.contributor.authorHuang, Junyang
dc.contributor.authorWright, Demelza
dc.contributor.authorGriffiths, Jack
dc.contributor.authorElliott, Eoin
dc.contributor.authorde Nijs, Bart
dc.contributor.authorRosta, Edina
dc.contributor.authorBaumberg, Jeremy
dc.contributor.orcidLin, Qianqi [0000-0001-7578-838X]
dc.contributor.orcidFöldes, Tamás [0000-0002-3978-1233]
dc.contributor.orcidHuang, Junyang [0000-0001-6676-495X]
dc.contributor.orcidWright, Demelza [0000-0002-8854-2714]
dc.contributor.orcidGriffiths, Jack [0000-0002-4052-1770]
dc.contributor.orcidde Nijs, Bart [0000-0002-8234-723X]
dc.contributor.orcidRosta, Edina [0000-0002-9823-4766]
dc.contributor.orcidBaumberg, Jeremy [0000-0002-9606-9488]
dc.date.accessioned2022-07-01T23:30:06Z
dc.date.available2022-07-01T23:30:06Z
dc.date.issued2022-06-24
dc.date.updated2022-04-25T08:24:04Z
dc.description.abstractTransient bonds between molecules and metal surfaces underpin catalysis, bio/molecular sensing, molecular electronics, and electrochemistry. Techniques aiming to characterize these bonds often yield conflicting conclusions, while single-molecule probes are scarce. A promising prospect confines light inside metal nanogaps to elicit in operando vibrational signatures through surface-enhanced Raman scattering. Here, we show through analysis of more than a million spectra that light irradiation of only a few microwatts on molecules at gold facets is sufficient to overcome the metallic bonds between individual gold atoms and pull them out to form coordination complexes. Depending on the molecule, these light-extracted adatoms persist for minutes under ambient conditions. Tracking their power-dependent formation and decay suggests that tightly trapped light transiently reduces energy barriers at the metal surface. This opens intriguing prospects for photocatalysis and controllable low-energy quantum devices such as single-atom optical switches.
dc.description.sponsorshipLeverhulme Trust, Isaac Newton Trust,
dc.identifier.doi10.17863/CAM.86082
dc.identifier.eissn2375-2548
dc.identifier.issn2375-2548
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338669
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.publisher.departmentDepartment of Physics
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleOptical suppression of energy barriers in single molecule-metal binding.
dc.typeArticle
dcterms.dateAccepted2022-04-22
prism.publicationNameSci Adv
pubs.funder-project-idIsaac Newton Trust (18.08(K))
pubs.funder-project-idLeverhulme Trust (ECF-2018-021)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L027151/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L015978/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (883703)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
pubs.licence-identifierapollo-deposit-licence-2-1
rioxxterms.typeJournal Article/Review
rioxxterms.versionVoR
rioxxterms.versionofrecord10.1126/sciadv.abp9285

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sciadv.abp9285.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format
Description:
Published version
Licence
https://creativecommons.org/licenses/by/4.0/