Ultra-flat Gold QCM Electrodes Fabricated with Pressure Forming Template Stripping for Protein Studies at the Nanoscale


Type
Article
Change log
Authors
Edwardson, John 
Rubio-Lara, Juan A 
Bergler, Frederik 
Atwood, Simon J 
Welland, Mark E 
Abstract

Single-molecule imaging of proteins using atomic force microscopy (AFM) is crucially dependent on protein attachment to ultra-flat substrates. The technique of template stripping (TS), which can be used to create large areas of atomically flat gold, has been used to great effect for this purpose. However, this approach requires an epoxy which can swell in solution, causing surface roughening and substantially increasing the thickness of any sample, preventing its use on acoustic resonators in liquid. Diffusion bonding techniques should circumvent this problem but cannot be used on samples containing patterned features with mismatched heights due to cracking and poor transfer. Here, we describe a new technique called pressure forming template stripping (PTS) which permits an ultra-flat (0.35 ± 0.05 nm root-mean-square roughness) layer of gold to be transferred to the surface of a patterned substrate at low temperature and pressure. We demonstrate this technique by modifying a quartz crystal microbalance (QCM) sensor to contain an ultra-flat gold surface. Standard QCM chips have substantial roughness, preventing AFM imaging of proteins on the surface after measurement. With our approach there is no need to run samples in parallel: the modified QCM chip is flat enough to permit high-contrast AFM imaging after adsorption studies have been conducted. The PTS-QCM chips are then used to demonstrate adsorption of bovine serum albumin in comparison to rough QCM chips. The ability to attach thin layers of ultra-flat metals to surfaces of heterogeneous nature without epoxy will have many applications in diverse fields where there is a requirement to observe nanoscale phenomena with multiple techniques, including surface and interfacial science, optics, and biosensing.

Description
Keywords
Journal Title
Langmuir
Conference Name
Journal ISSN
1520-5827
Volume Title
35
Publisher
American Chemical Society
Rights
All rights reserved