Structural effects of cap, crack, and intrinsic curvature on the microtubule catastrophe kinetics.
Accepted version
Repository URI
Repository DOI
Change log
Authors
Abstract
Microtubules (MTs) experience an effect called "catastrophe," which is the transition from the MT growth to a sudden dramatic shrinkage in length. The straight guanosine triphosphate (GTP)-tubulin cap at the filament tip and the intrinsic curvature of guanosine diphosphate (GDP)-tubulins are known to be the key thermodynamic factors that determine MT catastrophe, while the hydrolysis of this GTP-cap acts as the kinetic control of the process. Although several theoretical models have been developed, assuming the catastrophe occurs when the GTP-cap shrinks to a minimal stabilizing size, the structural effect of the GTP-cap and GDP-curvature is not explicitly included; thus, their influence on catastrophe kinetics remains less understood. To investigate this structural effect, we apply a single-protofilament model with one GTP-cap while assuming a random hydrolysis mechanism and take the occurrence of a crack in the lateral bonds between neighboring protofilaments as the onset of the catastrophe. Therein, we find the effective potential of the tip along the peel-off direction and formulate the catastrophe kinetics as a mean first-passage time problem, subject to thermal fluctuations. We consider cases with and without a compressive force on the MT tip, both of which give a quadratic effective potential, making MT catastrophe an Ornstein-Uhlenbeck process in our formalism. In the free-standing case, the mean catastrophe time has a sensitive tubulin-concentration dependence, similar to a double-exponential function, and agrees well with the experiment. For a compressed MT, we find a modified exponential function of force that shortens the catastrophe time.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1089-7690
Volume Title
Publisher
Publisher DOI
Rights
Sponsorship
Engineering and Physical Sciences Research Council (EP/J017639/1)