Association between antenatal diagnosis of late fetal growth restriction and educational outcomes in mid-childhood: A UK prospective cohort study with long-term data linkage study.

Published version
Repository DOI

Change log

BACKGROUND: Fetal growth restriction (FGR) is associated with a suboptimal intrauterine environment, which may adversely impact fetal neurodevelopment. However, analysing neurodevelopmental outcomes by observed birthweight fails to differentiate between true FGR and constitutionally small infants and cannot account for iatrogenic intervention. This study aimed to determine the relationship between antenatal FGR and mid-childhood (age 5 to 7 years) educational outcomes. METHODS AND FINDINGS: The Pregnancy Outcome Prediction Study (2008-2012) was a prospective birth cohort conducted in a single maternity hospital in Cambridge, United Kingdom. Clinicians were blinded to the antenatal diagnosis of FGR. FGR was defined as estimated fetal weight (EFW) <10th percentile at approximately 36 weeks of gestation, plus one or more indicators of placental dysfunction, including ultrasonic markers and maternal serum levels of placental biomarkers. A total of 2,754 children delivered at term were divided into 4 groups: FGR, appropriate-for-gestational age (AGA) with markers of placental dysfunction, healthy small-for-gestational age (SGA), and healthy AGA (referent). Educational outcomes (assessed at 5 to 7 years using UK national standards) were assessed with respect to FGR status using regression models adjusted for relevant covariates, including maternal, pregnancy, and socioeconomic factors. Compared to healthy AGA (N = 1,429), children with FGR (N = 250) were at higher risk of "below national standard" educational performance at 6 years (18% versus 11%; aOR 1.68; 95% CI 1.12 to 2.48, p = 0.01). By age 7, children with FGR were more likely to perform below standard in reading (21% versus 15%; aOR 1.46; 95% CI 0.99 to 2.13, p = 0.05), writing (28% versus 23%; aOR 1.46; 95% CI 1.02 to 2.07, p = 0.04), and mathematics (24% versus 16%; aOR 1.49; 95% CI 1.02 to 2.15, p = 0.03). This was consistent whether FGR was defined by ultrasound or biochemical markers. The educational attainment of healthy SGA children (N = 126) was comparable to healthy AGA, although this comparison may be underpowered. Our study design relied on linkage of routinely collected educational data according to nationally standardised metrics; this design allowed a high percentage of eligible participants to be included in the analysis (75%) but excludes those children educated outside of government-funded schools in the UK. Our focus on pragmatic and validated measures of educational attainment does not exclude more subtle effects of the intrauterine environment on specific aspects of neurodevelopment. CONCLUSIONS: Compared to children with normal fetal growth and no markers of placental dysfunction, FGR is associated with poorer educational attainment in mid-childhood.


Funder: NIHR Cambridge Biomedical Research Centre; funder-id:

Child, Infant, Newborn, Pregnancy, Female, Humans, Child, Preschool, Fetal Growth Retardation, Prospective Studies, Placenta, Prenatal Diagnosis, Infant, Small for Gestational Age, Pregnancy Outcome, Gestational Age, Educational Status
Journal Title
PLoS Med
Conference Name
Journal ISSN
Volume Title
Public Library of Science (PLoS)
Action Medical Research (GN2778)