Proteomics studies of protein homeostasis and aggregation in ageing and neurodegeneration

Change log
Vecchi, Giulia 

Upon ageing, a progressive disruption of protein homeostasis often leads to extensive protein aggregation and neurodegeneration. It is therefore important to study at the proteome level the origins and consequences of such disruption, which so far have remained elusive. Addressing this problem has recently become possible by major advances in mass spectrometry-based (MS) proteomics, which allows the identifications and quantification of thousands of proteins in a variety of biological samples. In the first part of this thesis, I analyse proteome-wide MS data for the nematode worm C. elegans upon ageing, in wild type (WT), long-lived and short-lived mutant strains. By comparing the total abundance and the soluble abundance for nearly 4000 proteins, I provide extensive evidence that proteins are expressed in adult worms at levels close to their solubility limits. With the use of sequence-based prediction tools, I then identify specific physico-chemical properties associated with this age-related protein homeostasis impairment. The results that I obtained reveal that the total intracellular protein content remains constant, in spite of the fact that the proteome undergoes wide remodeling upon ageing, resulting into severe protein homeostasis disruption and widespread protein aggregation. These results suggest a protein-dependent decrease in solubility associated with the protein homeostasis failure. In the second part of the thesis, I determine and classify potential interactions of misfolded protein oligomers with other proteins. This phenomenon is widely believed to give rise to cytotoxicity, although the mechanisms by which this happens are not fully understood. To address this question, I process and analyse MS data from structurally different oligomers (toxic type A and nontoxic type B) of the protein HypF-N, incubated in vitro with proteins extracted from murine cell cultures. I find that more than 2500 proteins are pulled down with the misfolded oligomers. These results indicate that the two types of oligomers interact with the same pool of proteins and differ only in the degree of binding. Functional annotation analysis on the groups reveals a preference of the oligomers to bind proteins in specific biological pathways and categories, including in particular mitochondrial membrane proteins, RNA-binding proteins and molecular chaperones. Overall, in this study I complement the powerful and high-throughput experimental approach of MS proteomics with bioinformatics analyses and prediction algorithms to define the physical, chemical and biological features of protein homeostasis disruption upon ageing and the interactome of misfolded oligomers.

Vendruscolo, Michele
protein aggregation, ageing, oligomers, proteostasis, neurodegeneration, data analysis, sequence-based predictions, c. elegans, MS-based proteomics, protein interactions, functional annotation analysis, prediction of physico-chemical principles, misfolding diseases
Doctor of Philosophy (PhD)
Awarding Institution
University of Cambridge