L-Fucose-containing arabinogalactan-protein in radish leaves.

Change log
Inaba, Miho 
Maruyama, Takuma 
Kotake, Toshihisa 
Matsuoka, Koji 

The carbohydrate moieties of arabinogalactan-proteins (AGPs) have β-(1 → 3)-galactan backbones to which side chains of (1 → 6)-linked β-Gal residues are attached through O-6. Some of these side chains are further substituted with other sugars. We investigated the structure of L-Fuc-containing oligosaccharides released from the carbohydrate moieties of a radish leaf AGP by digestion with α-L-arabinofuranosidase, followed by exo-β-(1 → 3)-galactanase. We detected a series of neutral β-(1 → 6)-galactooligosaccharides branching variously at O-3 of the Gal residues, together with corresponding acidic derivatives terminating in 4-O-methyl-GlcA (4-Me-GlcA) or GlcA at the non-reducing terminals. In neutral oligosaccharides with degree of polymerization (dp) mainly higher than 10, L-Fuc groups were attached through L-Ara residues as the sequence, α-L-Fucp-(1 → 2)-α-L-Araf-(1 →. This sequence was verified by isolation of the pentasaccharide α-L-Fuc-(1 → 2)-α-L-Araf-(1 → 3)-β-Gal-(1 → 6)-β-Gal-(1 → 6)-Gal upon digestion of the higher oligosaccharides with endo-β-(1 → 6)-galactanase. By contrast, in lower polymerized (predominantly dp 4) acidic oligosaccharides, L-Fuc groups were attached directly at the non-reducing terminals through α-(1 → 2)-linkages, resulting in the release of the tetrasaccharides, α-L-Fucp-(1 → 2)-β-GlcA-(1 → 6)-β-Gal-(1 → 6)-Gal and α-L-Fucp-(1 → 2)-β-4-Me-GlcA-(1 → 6)-β-Gal-(1 → 6)-Gal. In long acidic oligosaccharides with dp mainly higher than 13, L-Fuc groups localized on branches were attached to the uronic acids directly and/or L-Ara residues as in the neutral oligosaccharides.

Arabinogalactan-protein, Exo-β-(1→3)-galactanase, Radish, Raphanus sativus L., l-Fucose, Fucose, Galactans, Glycoside Hydrolases, Hydrolysis, Oligosaccharides, Plant Leaves, Raphanus
Journal Title
Carbohydr Res
Conference Name
Journal ISSN
Volume Title
Elsevier BV
Biotechnology and Biological Sciences Research Council (BB/G016240/1)
The authors would like to thank Prof. M. Hisamatsu, Mie University, Tsu, Japan, for a gift of cyclic β-(1→2)-glucan. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant-in-Aid for Scientific Research no. 23570048 to Y.T. and no. 24114006 to Y.T. and T.K.). Support was also provided by BBSRC Sustainable Bioenergy Centre: Cell wall sugars program (Grant No. BB/G016240/1) to P.D.