Repository logo
 

Surface chemistry and porosity engineering through etching reveal ultrafast oxygen reduction kinetics below 400 °C in B-site exposed (La,Sr)(Co,Fe)O3 thin-films

cam.depositDate2022-01-10
cam.issuedOnline2022-01-22
cam.oa.sapoa_rrs_na
cam.orpheus.successTue Feb 01 19:02:41 GMT 2022 - Embargo updated
dc.contributor.authorAcosta, M
dc.contributor.authorBaiutti, F
dc.contributor.authorWang, X
dc.contributor.authorCavallaro, A
dc.contributor.authorWu, J
dc.contributor.authorLi, W
dc.contributor.authorParker, SC
dc.contributor.authorAguadero, A
dc.contributor.authorWang, H
dc.contributor.authorTarancón, A
dc.contributor.authorMacManus-Driscoll, JL
dc.contributor.orcidAcosta, M [0000-0001-9504-883X]
dc.contributor.orcidBaiutti, F [0000-0001-9664-2486]
dc.contributor.orcidWu, J [0000-0003-3938-8834]
dc.contributor.orcidTarancón, A [0000-0002-1933-2406]
dc.date.accessioned2022-01-12T00:31:03Z
dc.date.available2022-01-12T00:31:03Z
dc.date.issued2022-03
dc.date.updated2022-01-10T18:22:43Z
dc.description.abstractOxides are critical materials for energy devices like solid oxide cells, catalysts, and membranes. Their performance is often limited by their catalytic activity at reduced temperatures. In this work, a simple etching process with acetic acid at room temperature was used to investigate how oxygen exchange is influenced by surface chemistry and mesoporous structuring in single-crystalline epitaxial (La0.60Sr0.40)0.95(Co0.20Fe0.80)O3. Using low energy ion scattering and electrical measurements, it is shown that increasing the B-site transition metal cation surface exposure (most notably with Fe) leads to strongly reduced activation energy from Ea≈1 eV to Ea ≈0.4 eV for oxygen exchange and an order of magnitude increased oxygen exchange kinetics below 400 °C. Increasing the active area by ~200% via mesoporous structuring leads to increased oxygen reduction rates by the same percentage. Density functional calculations indicate that a B-site exposed surface with high oxygen vacancy concentration can explain the experimental results. The work opens a pathway to tune surfaces and optimize oxygen exchange for energy devices.
dc.identifier.doi10.17863/CAM.80084
dc.identifier.issn0378-7753
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/332639
dc.language.isoeng
dc.publisherElsevier BV
dc.publisher.departmentDepartment of Materials Science And Metallurgy
dc.publisher.urlhttp://dx.doi.org/10.1016/j.jpowsour.2022.230983
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.subject40 Engineering
dc.subject4016 Materials Engineering
dc.subject34 Chemical Sciences
dc.subject3406 Physical Chemistry
dc.subject7 Affordable and Clean Energy
dc.titleSurface chemistry and porosity engineering through etching reveal ultrafast oxygen reduction kinetics below 400 °C in B-site exposed (La,Sr)(Co,Fe)O3 thin-films
dc.typeArticle
dcterms.dateAccepted2022-01-06
prism.publicationNameJournal of Power Sources
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P007767/1)
pubs.funder-project-idRoyal Academy of Engineering (RAEng) (CiET1819\24)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (101017709)
pubs.funder-project-idEPSRC (EP/T012218/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (882929)
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
pubs.licence-identifierapollo-deposit-licence-2-1
rioxxterms.typeJournal Article/Review
rioxxterms.versionAM
rioxxterms.versionofrecord10.1016/j.jpowsour.2022.230983

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
Acosta_Ultrafast oxygen reduction kinetics - submitted v2 final.docx
Size:
2.57 MB
Format:
Unknown data format
Description:
Accepted version
Licence
http://www.rioxx.net/licenses/all-rights-reserved
No Thumbnail Available
Name:
Acosta_Supplementary.docx
Size:
2.36 MB
Format:
Unknown data format
Description:
Supporting information
Licence
http://www.rioxx.net/licenses/all-rights-reserved