CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling

Published version
Repository DOI

Change log
Authors
Deng, Bowen 
Riebesell, Janosh 
Han, Kevin 
Abstract

Large-scale simulations with complex electron interactions remain one of the greatest challenges for atomistic modelling. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study technologically relevant phenomena. Here we present the Crystal Hamiltonian Graph Neural Network (CHGNet), a graph neural network-based machine-learning interatomic potential (MLIP) that models the universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory calculations of more than 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in LixMnO2, the finite temperature phase diagram for LixFePO4 and Li diffusion in garnet conductors. We highlight the significance of charge information for capturing appropriate chemistry and provide insights into ionic systems with additional electronic degrees of freedom that cannot be observed by previous MLIPs.

Description

Acknowledgements: This work was funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC0205CH11231 (Materials Project programme KC23MP). The work was also supported by the computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE), supported by National Science Foundation grant number ACI1053575; the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory; and the Lawrencium Computational Cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory. We thank J. Munro and L. Barroso-Luque for helpful discussions.


Funder: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC0205CH11231 (Materials Project program KC23MP).

Keywords
Journal Title
Nature Machine Intelligence
Conference Name
Journal ISSN
2522-5839
Volume Title
5
Publisher
Nature Publishing Group UK
Sponsorship
National Science Foundation (NSF) (ACI1053575)