Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls.

Change log
Cornuault, Valérie 
Buffetto, Fanny 
Rydahl, Maja G 
Marcus, Susan E 
Torode, Thomas A 

The derivation of two sensitive monoclonal antibodies directed to heteroxylan cell wall polysaccharide preparations has allowed the identification of potential inter-linkages between xylan and pectin in potato tuber cell walls and also between xylan and arabinogalactan-proteins in oat grain cell walls. Plant cell walls are complex composites of structurally distinct glycans that are poorly understood in terms of both in muro inter-linkages and developmental functions. Monoclonal antibodies (MAbs) are versatile tools that can detect cell wall glycans with high sensitivity through the specific recognition of oligosaccharide structures. The isolation of two novel MAbs, LM27 and LM28, directed to heteroxylan, subsequent to immunisation with a potato cell wall fraction enriched in rhamnogalacturonan-I (RG-I) oligosaccharides, is described. LM27 binds strongly to heteroxylan preparations from grass cell walls and LM28 binds to a glucuronosyl-containing epitope widely present in heteroxylans. Evidence is presented suggesting that in potato tuber cell walls, some glucuronoxylan may be linked to pectic macromolecules. Evidence is also presented that suggests in oat spelt xylan both the LM27 and LM28 epitopes are linked to arabinogalactan-proteins as tracked by the LM2 arabinogalactan-protein epitope. This work extends knowledge of the potential occurrence of inter-glycan links within plant cell walls and describes molecular tools for the further analysis of such links.

Arabinogalactan-proteins, Cell wall, Glucuronoxylan, Pectin, Polysaccharides, Rhamnogalacturonan-I, Antibodies, Monoclonal, Cell Wall, Pectins, Plant Cells, Polysaccharides, Xylans
Journal Title
Conference Name
Journal ISSN
Volume Title
Springer Science and Business Media LLC
Biotechnology and Biological Sciences Research Council (BB/G016240/1)
This work was supported by the European Union Seventh Framework Programme (FP7 2007-2013) under the WallTraC project (Grant Agreement number 263916). (This article reflects the authors’ views only and the European Union is not liable for any use that may be made of the information contained herein). The work was also supported by the United Kingdom Biotechnology and Biological Research Council (BBSRC, Grant BB/K017489/1). JX acknowledges support from the Chinese Scholarship Council, TAT from a BBSRC studentship and MGR from the Danish Strategic Research Council and The Danish Council for Independent Research, Technology and Production Sciences as part of the GlycAct project (FI 10-093465). We acknowledge kind gifts of enzymes from Harry Gilbert and oligosaccharides from Sanna Koutaniemi. We thank Theodora Tryfona for mass spectrometry analysis.