Repository logo
 

FIERY: Future Instance Prediction in Bird’s-Eye View from Surround Monocular Cameras

Accepted version
Peer-reviewed

Type

Conference Object

Change log

Authors

Hu, Anthony 
Murez, Zak 
Mohan, Nikhil 
Dudas, Sofia 
Hawke, Jeffrey 

Abstract

Driving requires interacting with road agents and predicting their future behaviour in order to navigate safely. We present FIERY: a probabilistic future prediction model in bird’s-eye view from monocular cameras. Our model predicts future instance segmentation and motion of dynamic agents that can be transformed into non-parametric future trajectories. Our approach combines the perception, sensor fusion and prediction components of a traditional autonomous driving stack by estimating bird’s-eye-view prediction directly from surround RGB monocular camera inputs. FIERY learns to model the inherent stochastic nature of the future solely from camera driving data in an end-to-end manner, without relying on HD maps, and predicts multimodal future trajectories. We show that our model outperforms previous prediction baselines on the NuScenes and Lyft datasets. The code and trained models are available at https://github.com/wayveai/fiery.

Description

Keywords

Journal Title

Conference Name

International Conference on Computer Vision (ICCV)

Journal ISSN

Volume Title

Publisher

Sponsorship
Toshiba Europe, grant G100453.