Repository logo
 

Terrestrial habitats decouple the relationship between species and subspecies diversification in mammals.

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

van Holstein, Laura 
Foley, Robert A 

Abstract

Darwin proposed that lineages with higher diversification rates should evidence this capacity at both the species and subspecies level. This should be the case if subspecific boundaries are evolutionary faultlines along which speciation is generally more likely to occur. This pattern has been described for birds, but remains poorly understood in mammals. To investigate the relationship between species richness (SR) and subspecies richness (SSR), we calculated the strength of the correlation between the two across all mammals. Mammalian taxonomic richness correlates positively, but only very weakly, between the species and subspecies level, deviating from the pattern found in birds. However, when mammals are separated by environmental substrate, the relationship between generic SR and average SSR in non-terrestrial taxa is stronger than that reported for birds (Kendall's tau = 0.31, p < 0.001). By contrast, the correlation in terrestrial taxa alone weakens compared to that for all mammals (Kendall's tau = 0.11, p < 0.001). A significant interaction between environmental substrate and SR in phylogenetic regressions confirms a role for terrestrial habitats in disrupting otherwise linked dynamics of diversification across the taxonomic hierarchy. Further, models including species range size as a predictor show that range size affects SSR more in terrestrial taxa. Taken together, these results suggest that the dynamics of diversification of terrestrial mammals are more affected by physical barriers or ecological heterogeneity within ranges than those of non-terrestrial mammals, at two evolutionary levels. We discuss the implication of these results for the equivalence of avian and mammalian subspecies, their potential role in speciation and the broader question of the relationship between microevolution and macroevolution.

Description

Keywords

diversification, evolution, mammals, speciation, subspecies, Animals, Biodiversity, Biological Evolution, Ecosystem, Mammals

Journal Title

Proc Biol Sci

Conference Name

Journal ISSN

0962-8452
1471-2954

Volume Title

287

Publisher

The Royal Society

Rights

All rights reserved