Repository logo
 

A New Comprehensive Colorectal Cancer Risk Prediction Model Incorporating Family History, Personal Characteristics, and Environmental Factors.

Accepted version
Peer-reviewed

Change log

Authors

Hua, Xinwei 
MacInnis, Robert J 
Gallinger, Steven 

Abstract

PURPOSE: Reducing colorectal cancer incidence and mortality through early detection would improve efficacy if targeted. We developed a colorectal cancer risk prediction model incorporating personal, family, genetic, and environmental risk factors to enhance prevention. METHODS: A familial risk profile (FRP) was calculated to summarize individuals' risk based on detailed cancer family history (FH), family structure, probabilities of mutation in major colorectal cancer susceptibility genes, and a polygenic component. We developed risk models, including individuals' FRP or binary colorectal cancer FH, and colorectal cancer risk factors collected at enrollment using population-based colorectal cancer cases (N = 4,445) and controls (N = 3,967) recruited by the Colon Cancer Family Registry Cohort (CCFRC). Model validation used CCFRC follow-up data for population-based (N = 12,052) and clinic-based (N = 5,584) relatives with no cancer history at recruitment to assess model calibration [expected/observed rate ratio (E/O)] and discrimination [area under the receiver-operating-characteristic curve (AUC)]. RESULTS: The E/O [95% confidence interval (CI)] for FRP models for population-based relatives were 1.04 (0.74-1.45) for men and 0.86 (0.64-1.20) for women, and for clinic-based relatives were 1.15 (0.87-1.58) for men and 1.04 (0.76-1.45) for women. The age-adjusted AUCs (95% CI) for FRP models for population-based relatives were 0.69 (0.60-0.78) for men and 0.70 (0.62-0.77) for women, and for clinic-based relatives were 0.77 (0.69-0.84) for men and 0.68 (0.60-0.76) for women. The incremental values of AUC for FRP over FH models for population-based relatives were 0.08 (0.01-0.15) for men and 0.10 (0.04-0.16) for women, and for clinic-based relatives were 0.11 (0.05-0.17) for men and 0.11 (0.06-0.17) for women. CONCLUSIONS: Both models calibrated well. The FRP-based model provided better risk stratification and risk discrimination than the FH-based model. IMPACT: Our findings suggest detailed FH may be useful for targeted risk-based screening and clinical management.

Description

Keywords

Adult, Aged, Biomarkers, Tumor, Colorectal Neoplasms, DNA Mismatch Repair, Feasibility Studies, Female, Follow-Up Studies, Genetic Testing, Humans, Incidence, Male, Medical History Taking, Middle Aged, Mutation, ROC Curve, Registries, Risk Assessment, Risk Factors

Journal Title

Cancer Epidemiol Biomarkers Prev

Conference Name

Journal ISSN

1055-9965
1538-7755

Volume Title

29

Publisher

American Association for Cancer Research (AACR)

Rights

All rights reserved