Repository logo
 

UAV-derived greenness and within-crown spatial patterning can detect ash dieback in individual trees

Published version
Peer-reviewed

Repository DOI


Change log

Authors

Grieve, SWD 
Henshaw, AJ 
Owen, HJF 
Buggs, RJA 

Abstract

jats:titleAbstract</jats:title>jats:p jats:list

jats:list-itemjats:pAsh Dieback (ADB) has been present in the UK since 2012 and is expected to kill up to 80% of UK ash trees. Detecting and quantifying the extent of ADB in individual tree crowns (ITCs), which is crucial to understanding resilience and resistance, currently relies on visual assessments which are impractical over large scales or at high frequency. The improved imaging capabilities and declining cost of consumer UAVs, together with new remote sensing methods such as structure from motion photogrammetry (SfM) offers potential to quantify the fine‐scale structural and spectral metrics of ITCs that are indicative of ADB, rapidly, and at low‐cost.</jats:p></jats:list-item>

jats:list-itemjats:pWe extract high‐resolution 3D RGB point clouds derived from SfM of canopy ash trees taken monthly throughout the growing season at Marden Park, Surrey, UK, a woodland impacted by ADB. We segment ITCs, extract green chromatic coordinate (jats:italicg</jats:italic>jats:subjats:italiccc</jats:italic></jats:sub>), and test the relationship with visual assessments of crown health. Next, we quantify spatial patterning of dieback within ITCs by testing the relationship between internal variation of jats:italicg</jats:italic>jats:subjats:italiccc</jats:italic></jats:sub> and path length, a measure of the distance from foliage to trunk, for small clusters of foliage.</jats:p></jats:list-item>

jats:list-itemjats:pWe find jats:italicg</jats:italic>jats:subjats:italiccc</jats:italic></jats:sub> correlates with visual assessments of crown health throughout the growing season, but the strongest relationships are in measurements taken after peak greenness, when the effects of ADB on foliage are likely to be most prevalent. We also find a negative relationship between jats:italicg</jats:italic>jats:subjats:italiccc</jats:italic></jats:sub> and path length in infected trees, indicating foliage loss is more severe at crown extremities.</jats:p></jats:list-item>

jats:list-itemjats:pWe demonstrate a new method for identifying ADB at scale using a consumer‐grade 3D RGB UAV system and suggest this approach could be adopted for widespread rapid monitoring. We recommend the optimum time of year for data acquisition, which we find to be an important factor for detecting ADB. Although here applied to ADB, this framework is applicable to a multitude of drivers of crown dieback, presenting a method for identifying spectral‐structural relationships which may be characteristic of disturbance type.</jats:p></jats:list-item> </jats:list> </jats:p>

Description

Publication status: Published

Keywords

31 Biological Sciences, 3103 Ecology

Journal Title

Ecological Solutions and Evidence

Conference Name

Journal ISSN

2688-8319
2688-8319

Volume Title

5

Publisher

Wiley
Sponsorship
MRC (MR/T019832/1)