Quantum self-supervised learning
cam.issuedOnline | 2022-05-06 | |
dc.contributor.author | Jaderberg, B | |
dc.contributor.author | Anderson, LW | |
dc.contributor.author | Xie, W | |
dc.contributor.author | Albanie, S | |
dc.contributor.author | Kiffner, M | |
dc.contributor.author | Jaksch, D | |
dc.contributor.orcid | Jaderberg, B [0000-0001-9297-0175] | |
dc.contributor.orcid | Kiffner, M [0000-0002-8321-6768] | |
dc.date.accessioned | 2022-05-09T11:03:51Z | |
dc.date.available | 2022-05-09T11:03:51Z | |
dc.date.issued | 2022-07-01 | |
dc.date.submitted | 2021-12-08 | |
dc.date.updated | 2022-05-09T11:03:50Z | |
dc.description | Funder: National Research Foundation Singapore; doi: https://doi.org/10.13039/501100001381 | |
dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>The resurgence of self-supervised learning, whereby a deep learning model generates its own supervisory signal from the data, promises a scalable way to tackle the dramatically increasing size of real-world data sets without human annotation. However, the staggering computational complexity of these methods is such that for state-of-the-art performance, classical hardware requirements represent a significant bottleneck to further progress. Here we take the first steps to understanding whether quantum neural networks (QNNs) could meet the demand for more powerful architectures and test its effectiveness in proof-of-principle hybrid experiments. Interestingly, we observe a numerical advantage for the learning of visual representations using small-scale QNN over equivalently structured classical networks, even when the quantum circuits are sampled with only 100 shots. Furthermore, we apply our best quantum model to classify unseen images on the<jats:italic>ibmq_paris</jats:italic>quantum computer and find that current noisy devices can already achieve equal accuracy to the equivalent classical model on downstream tasks.</jats:p> | |
dc.identifier.doi | 10.17863/CAM.84312 | |
dc.identifier.eissn | 2058-9565 | |
dc.identifier.issn | 2058-9565 | |
dc.identifier.other | qstac6825 | |
dc.identifier.other | ac6825 | |
dc.identifier.other | qst-101561.r1 | |
dc.identifier.uri | https://www.repository.cam.ac.uk/handle/1810/336893 | |
dc.language | en | |
dc.publisher | IOP Publishing | |
dc.publisher.url | http://dx.doi.org/10.1088/2058-9565/ac6825 | |
dc.subject | 5108 Quantum Physics | |
dc.subject | 51 Physical Sciences | |
dc.title | Quantum self-supervised learning | |
dc.type | Article | |
dcterms.dateAccepted | 2022-04-19 | |
prism.issueIdentifier | 3 | |
prism.publicationName | Quantum Science and Technology | |
prism.volume | 7 | |
pubs.funder-project-id | Engineering and Physical Sciences Research Council (EP/M013243/1, EP/M013774/1, EP/T001062/1) | |
pubs.funder-project-id | Visual AI (EP/T028572/1) | |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by/4.0/ | |
rioxxterms.version | VoR | |
rioxxterms.versionofrecord | 10.1088/2058-9565/ac6825 |
Files
Original bundle
1 - 2 of 2
No Thumbnail Available
- Name:
- metadata.xml
- Size:
- 9.53 KB
- Format:
- Extensible Markup Language
- Description:
- Bibliographic metadata
- Licence
- https://creativecommons.org/licenses/by/4.0/
Loading...
- Name:
- pdf.pdf
- Size:
- 2.13 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
- Licence
- https://creativecommons.org/licenses/by/4.0/