Repository logo
 

Learning Person-Specific Cognition From Facial Reactions for Automatic Personality Recognition

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

Abstract—This paper proposes to recognise the true (self-reported) personality traits from the target subject’s cognition simulated from facial reactions. This approach builds on the following two findings in cognitive science: (i) human cognition partially determines expressed behaviour and is directly linked to true personality traits; and (ii) in dyadic interactions, individuals’ nonverbal behaviours are influenced by their conversational partner’s behaviours. In this context, we hypothesise that during a dyadic interaction, a target subject’s facial reactions are driven by two main factors: their internal (person-specific) cognitive process, and the externalised nonverbal behaviours of their conversational partner. Consequently, we propose to represent the target subject’s (defined as the listener) person-specific cognition in the form of a person-specific CNN architecture that has unique architectural parameters and depth, which takes audio-visual non-verbal cues displayed by the conversational partner (defined as the speaker) as input, and is able to reproduce the target subject’s facial reactions. Each person-specific CNN is explored by the Neural Architecture Search (NAS) and a novel adaptive loss function, which is then represented as a graph representation for recognising the target subject’s true personality. Experimental results not only show that the produced graph representations are well associated with target subjects’ personality traits in both human-human and human-machine interaction scenarios, and outperform the existing approaches with significant advantages, but also demonstrate that the proposed novel strategies help in learning more reliable personality representations.

Description

Keywords

46 Information and Computing Sciences, 4608 Human-Centred Computing, Behavioral and Social Science, Clinical Research, Mental health

Journal Title

IEEE Transactions on Affective Computing

Conference Name

Journal ISSN

1949-3045
1949-3045

Volume Title

PP

Publisher

Institute of Electrical and Electronics Engineers (IEEE)
Sponsorship
Engineering and Physical Sciences Research Council (EP/R030782/1)
European Commission Horizon 2020 (H2020) Societal Challenges (826232)