Repository logo

Wind turbine blade end-of-life options: An economic comparison

Accepted version

Change log


Liu, P 
Barlow, CY 


Global wind energy is developing rapidly, with total installed capacity having increased from 24,332 MW in 2001 to 650,758 MW in 2019. Environmental concerns have been raised over the large volumes of waste that will be generated as these wind turbine blades are decommissioned over the coming decades. Although wind turbines are largely clean during operation, in manufacture and end-of-life stages they release emissions and consume significant energy. Wind turbine blades are mainly made from lightweight thermoset composites (glass fibre/carbon fibre), which are economically challenging to recycle. This study aims to understand the economic feasibilities of recycling technology options for blade waste management. We have used a quantitative method, first building a financial performance model for wind turbine blade end of life, then evaluating and comparing the financial performance for all available end of life options, and finally performing a sensitivity analysis. We found that mechanical recycling and fluidised-bed recycling are the optimal options of the ready-to-go technologies, and chemical recycling is the optimal option for technologies currently available only at lab scale.



Wind energy, Composites recycling, End-of-life wind turbine blades, Wind energy economy

Journal Title

Resources, Conservation and Recycling

Conference Name

Journal ISSN


Volume Title



Elsevier BV
China Scholarship Council (CSC)