Functional random effects modeling of brain shape and connectivity
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
We present a statistical framework that jointly models brain shape and functional connectivity, which are two complex aspects of the brain that have been classically studied independently. We adopt a Riemannian modeling approach to account for the non-Euclidean geometry of the space of shapes and the space of connectivity that constrains trajectories of co-variation to be valid statistical estimates. In order to disentangle genetic sources of variability from those driven by unique environmental factors, we embed a functional random effects model in the Riemannian framework. We apply the proposed model to the Human Connectome Project dataset to explore spontaneous co-variation between brain shape and connectivity in young healthy individuals.