Repository logo

Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: An alternative to conventional spiral MR Fingerprinting.

Accepted version



Change log


Benjamin, Arnold Julian Vinoj 
Gómez, Pedro A 
Golbabaee, Mohammad 
Mahbub, Zaid Bin 
Sprenger, Tim 


PURPOSE: To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters. METHODS: The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8s and this method was validated on two different phantoms and three healthy volunteer brains in vivo. RESULTS: Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (<4% deviation for T1 and <6% deviation for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable. CONCLUSION: The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.



Cartesian MRF, Multi-shot EPI, Quantitative maps, Algorithms, Brain, Echo-Planar Imaging, Healthy Volunteers, Humans, Image Processing, Computer-Assisted, Phantoms, Imaging, Reference Values

Journal Title

Magn Reson Imaging

Conference Name

Journal ISSN


Volume Title



Elsevier BV
The research leading to these results has received funding from the European Commission H2020 Framework Programme (H2020- MSCAITN- 2014), number 642685 MacSeNet, the Engineering and Physical Sciences Research Council (EPSRC) platform Compressed Quantitative MRI grant, number EP/M019802/1 and the Scottish Research Partnership in Engineering (SRPe) award, number SRPe PECRE1718/ 17.