Repository logo
 

Physiological insight into the conserved properties of Caenorhabditis elegans acid-sensing degenerin/epithelial sodium channels.

Published version
Peer-reviewed

Change log

Authors

McCubbin, Patrick TN 

Abstract

Acid-sensing ion channels (ASICs) are members of the diverse family of degenerin/epithelial sodium channels (DEG/ENaCs). They perform a wide range of physiological roles in healthy organisms, including in gut function and synaptic transmission, but also play important roles in disease, as acidosis is a hallmark of painful inflammatory and ischaemic conditions. We performed a screen for acid sensitivity on all 30 subunits of the Caenorhabditis elegans DEG/ENaC family using two-electrode voltage clamp in Xenopus oocytes. We found two groups of acid-sensitive DEG/ENaCs characterised by being either inhibited or activated by increasing proton concentrations. Three of these acid-sensitive C. elegans DEG/ENaCs were activated by acidic pH, making them functionally similar to the vertebrate ASICs. We also identified three new members of the acid-inhibited DEG/ENaC group, giving a total of seven additional acid-sensitive channels. We observed sensitivity to the anti-hypertensive drug amiloride as well as modulation by the trace element zinc. Acid-sensitive DEG/ENaCs were found to be expressed in both neurons and non-neuronal tissue, highlighting the likely functional diversity of these channels. Our findings provide a framework to exploit the C. elegans channels as models to study the function of these acid-sensing channels in vivo, as well as to study them as potential targets for anti-helminthic drugs. KEY POINTS: Acidosis plays many roles in healthy physiology, including synaptic transmission and gut function, but is also a key feature of inflammatory pain, ischaemia and many other conditions. Cells monitor acidosis of their surroundings via pH-sensing channels, including the acid-sensing ion channels (ASICs). These are members of the degenerin/epithelial sodium channel (DEG/ENaC) family, along with, as the name suggests, vertebrate ENaCs and degenerins of the roundworm Caenorhabditis elegans. By screening all 30 C. elegans DEG/ENaCs for pH dependence, we describe, for the first time, three acid-activated members, as well as three additional acid-inhibited channels. We surveyed both groups for sensitivity to amiloride and zinc; like their mammalian counterparts, their currents can be blocked, enhanced or unaffected by these modulators. Likewise, they exhibit diverse ion selectivity. Our findings underline the diversity of acid-sensitive DEG/ENaCs across species and provide a comparative resource for better understanding the molecular basis of their function.

Description

Keywords

acid-sensing ion channel, amiloride, degenerin/epithelial sodium channel, proton-gated, zinc, Animals, Caenorhabditis elegans, Epithelial Sodium Channels, Degenerin Sodium Channels, Acid Sensing Ion Channels, Amiloride, Mammals

Journal Title

J Physiol

Conference Name

Journal ISSN

0022-3751
1469-7793

Volume Title

Publisher

Wiley
Sponsorship
Medical Research Council, as part of United Kingdom Research and Innovation (MC‐A023‐5PB91)
Wellcome Trust (WT103784MA)
National Institutes for Health (R01NS110391, R21DC015652)