High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
A machine-learning model has been trained to discover Heusler compounds, which are intermetallics exhibiting diverse physical properties attractive for applications in thermoelectric and spintronic materials. Improving these properties requires knowledge of crystal structures, which occur in three subtle variations (Heusler, inverse Heusler, and CsCl-type structures) that are difficult, and at times impossible, to distinguish by diffraction techniques. Compared to alternative approaches, this Heusler discovery engine performs exceptionally well, making fast and reliable predictions of the occurrence of Heusler vs non-Heusler compounds for an arbitrary combination of elements with no structural input on over 400 000 candidates. The model has a true positive rate of 0.94 (and false positive rate of 0.01). It is also valuable for data sanitizing, by flagging questionable entries in crystallographic databases. It was applied to screen candidates with the formula AB
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1520-5002