Unsupervised Image Restoration Using Partially Linear Denoisers.
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Deep neural network based methods are the state of the art in various image restoration problems. Standard supervised learning frameworks require a set of noisy measurement and clean image pairs for which a distance between the output of the restoration model and the ground truth, clean images is minimized. The ground truth images, however, are often unavailable or very expensive to acquire in real-world applications. We circumvent this problem by proposing a class of structured denoisers that can be decomposed as the sum of a nonlinear image-dependent mapping, a linear noise-dependent term and a small residual term. We show that these denoisers can be trained with only noisy images under the condition that the noise has zero mean and known variance. The exact distribution of the noise, however, is not assumed to be known. We show the superiority of our approach for image denoising, and demonstrate its extension to solving other restoration problems such as image deblurring where the ground truth is not available. Our method outperforms some recent unsupervised and self-supervised deep denoising models that do not require clean images for their training. For deblurring problems, the method, using only one noisy and blurry observation per image, reaches a quality not far away from its fully supervised counterparts on a benchmark dataset.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1939-3539
Volume Title
Publisher
Publisher DOI
Rights
Sponsorship
EPSRC (EP/S026045/1)
EPSRC (EP/T003553/1)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (691070)
Alan Turing Institute (unknown)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (777826)
Leverhulme Trust (RPG-2018-121)
Leverhulme Trust (PLP-2017-275)
Alan Turing Institute (Unknown)
EPSRC (EP/T017961/1)
Royal Society (RSWF\R3\193016)