Repository logo
 

Mode-selective vibrational control of charge transport in $π$-conjugated molecular materials


Change log

Authors

Bakulin, Artem A 
Lovrinčić, Robert 
Xi, Yu 
Selig, Oleg 
Bakker, Huib J 

Abstract

The soft character of organic materials leads to strong coupling between molecular nuclear and electronic dynamics. This coupling opens the way to control charge transport in organic electronic devices by inducing molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such control has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be controlled by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1500-1700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. Vibrational control thus presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.

Description

Keywords

cond-mat.mtrl-sci, cond-mat.mtrl-sci, cond-mat.soft

Journal Title

Nature Communications

Conference Name

Journal ISSN

2041-1723

Volume Title

6

Publisher

NPG
Sponsorship
European Research Council (639750)
This work was supported by the Netherlands Organization for Scientific Research (NWO) through the ‘Stichting voor Fundamenteel Onderzoek der Materie’ (FOM) research programme. A.A.B. also acknowledges a VENI grant from the NWO. A.A.B. is currently a Royal Society University Research Fellow. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639750). R.L. acknowledges a Marie Curie IE Fellowship from the EU, held at the Weizmann Institute (FP7-PEOPLE-2011-IEF no. 29866). X.Y. thanks the Council for Higher Education (Israel) for a PBC programme postdoctoral research fellowship. V.C. thanks support from the Office of Naval Research and MURI Center on Advanced Molecular Photovoltaics, award No. N00014-14-1-0580. J.L.B. acknowledges support by competitive research funding from King Abdullah University of Science and Technology (KAUST) and by ONR Global, Grant N62909-15-1-2003. D.C. thanks the Israel Science Foundation Centre of Excellence program, the Grand Centre for Sensors and Security and the Schmidt Minerva Centre for Supramolecular Architecture for partial support. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research.