Repository logo
 

Stable spectral methods for time-dependent problems and the preservation of structure

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Iserles, Arieh 

Abstract

This paper is concerned with orthonormal systems in real intervals, given with zero Dirichlet boundary conditions. More speci cally, our interest is in systems with a skew-symmetric differentiation matrix (this excludes orthonor- mal polynomials). We consider a simple construction of such systems and pur- sue its rami cations. In general, given any C1(a; b) weight function such that w(a) = w(b) = 0, we can generate an orthonormal system with a skew-symmetric di erentiation matrix. Except for the case a = 􀀀1, b = +1, only few powers of that matrix are bounded and we establish a connection between properties of the weight function and boundedness. In particular, we examine in detail two weight functions: the Laguerre weight function x e􀀀x for x > 0 and > 0 and the ultraspherical weight function (1 􀀀 x2) , x 2 (􀀀1; 1), > 0, and estab- lish their properties. Both weights share a most welcome feature of separability, which allows for fast computation. The quality of approximation is highly sen- sitive to the choice of and we discuss how to choose optimally this parameter, depending on the number of zero boundary conditions.

Description

Keywords

Journal Title

Foundations of Computational Mathematics

Conference Name

Journal ISSN

1615-3375
1615-3383

Volume Title

Publisher

Springer Verlag

Publisher DOI

Publisher URL