Repository logo
 

Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization.

Published version
Peer-reviewed

Change log

Authors

Kashaf, SS 
Angione, C 
Lió, P 

Abstract

BACKGROUND: Clostridium difficile is a bacterium which can infect various animal species, including humans. Infection with this bacterium is a leading healthcare-associated illness. A better understanding of this organism and the relationship between its genotype and phenotype is essential to the search for an effective treatment. Genome-scale metabolic models contain all known biochemical reactions of a microorganism and can be used to investigate this relationship. RESULTS: We present icdf834, an updated metabolic network of C. difficile that builds on iMLTC806cdf and features 1227 reactions, 834 genes, and 807 metabolites. We used this metabolic network to reconstruct the metabolic landscape of this bacterium. The standard metabolic model cannot account for changes in the bacterial metabolism in response to different environmental conditions. To account for this limitation, we also integrated transcriptomic data, which details the gene expression of the bacterium in a wide array of environments. Importantly, to bridge the gap between gene expression levels and protein abundance, we accounted for the synonymous codon usage bias of the bacterium in the model. To our knowledge, this is the first time codon usage has been quantified and integrated into a metabolic model. The metabolic fluxes were defined as a function of protein abundance. To determine potential therapeutic targets using the model, we conducted gene essentiality and metabolic pathway sensitivity analyses and calculated flux control coefficients. We obtained 92.3% accuracy in predicting gene essentiality when compared to experimental data for C. difficile R20291 (ribotype 027) homologs. We validated our context-specific metabolic models using sensitivity and robustness analyses and compared model predictions with literature on C. difficile. The model predicts interesting facets of the bacterium's metabolism, such as changes in the bacterium's growth in response to different environmental conditions. CONCLUSIONS: After an extensive validation process, we used icdf834 to obtain state-of-the-art predictions of therapeutic targets for C. difficile. We show how context-specific metabolic models augmented with codon usage information can be a beneficial resource for better understanding C. difficile and for identifying novel therapeutic targets. We remark that our approach can be applied to investigate and treat against other pathogens.

Description

Keywords

Antibiotic resistance, Clostridium difficile, Flux balance analysis, Genome scale modeling, Metabolic modeling, Metabolic networks, Metabolic pathways, Sensitivity analysis

Journal Title

BMC Syst Biol

Conference Name

Journal ISSN

1752-0509
1752-0509

Volume Title

11

Publisher

Springer Science and Business Media LLC
Sponsorship
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (665564)
Publication charges for this article have been funded by EpiHealthNet, FP7-PEOPLE-2012-ITN and EU project H2020 FET Open CIRCLE (Coordinating European Research on Molecular Communications) No. 665564.