Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation


Change log
Authors
Kamnitsas, K 
Ledig, C 
Newcombe, VFJ 
Simpson, JP 
Kane, AD 
Abstract

We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data. Further, we analyze the development of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger contextual information, we employ a dual pathway architecture that processes the input images at multiple scales simultaneously. For post-processing of the network's soft segmentation, we use a 3D fully connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumours, and ischemic stroke. We improve on the state-of-the-art for all three applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our method is computationally efficient, which allows its adoption in a variety of research and clinical settings. The source code of our implementation is made publicly available.

Description
Keywords
3D convolutional neural network, fully connected CRF, segmentation, brain lesions, deep learning
Journal Title
Medical Image Analysis
Conference Name
Journal ISSN
1361-8415
1361-8423
Volume Title
36
Publisher
Elsevier
Sponsorship
Medical Research Council (G9439390)
This work is supported by the EPSRC First Grant scheme (grant ref no. EP/N023668/1) and partially funded under the 7th Framework Programme by the European Commission (TBIcare: http: //www.tbicare.eu/ ; CENTER-TBI: https://www.center-tbi.eu/). This work was further supported by a Medical Research Council (UK) Program Grant (Acute brain injury: heterogeneity of mechanisms, therapeutic targets and outcome effects [G9439390 ID 65883]), the UK National Institute of Health Research Biomedical Research Centre at Cambridge and Technology Platform funding provided by the UK Department of Health. KK is supported by the Imperial College London PhD Scholarship Programme. VFJN is supported by a Health Foundation/Academy of Medical Sciences Clinician Scientist Fellowship. DKM is supported by an NIHR Senior Investigator Award. We gratefully acknowledge the support of NVIDIA Corporation with the donation of two Titan X GPUs for our research.