Repository logo
 

Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI)

Published version
Peer-reviewed

Type

Article

Change log

Authors

Morgenstern, O 
Hegglin, M 
Rozanov, E 
O'Connor, F 
Luke Abraham, N 

Abstract

We present an overview of state-of-The-Art chemistry-climate and chemistry transport models that are used within phase 1 of the Chemistry-Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain intermodel differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.

Description

Keywords

37 Earth Sciences, 3701 Atmospheric Sciences, 13 Climate Action

Journal Title

Geoscientific Model Development

Conference Name

Journal ISSN

1991-959X
1991-9603

Volume Title

10

Publisher

European Geosciences Union
Sponsorship
National Centre for Atmospheric Science (NERC) (via University of Leeds) (R8H12/83/009)
European Commission (603557)
This work has been supported by NIWA as part of its government-funded, core research. Olaf Morgenstern acknowledges support from the Royal Society Marsden Fund, grant 12-NIW-006, and under the Deep South National Science Challenge. The authors wish to acknowledge the contribution of NeSI high-performance computing facilities to the results of this research. New Zealand’s national facilities are provided by the New Zealand eScience Infrastructure (NeSI) and funded jointly by NeSI’s collaborator institutions and through the Ministry of Business, Innovation & Employment’s Research Infrastructure programme (https://www.nesi.org.nz). The SOCOL team acknowledges support from the Swiss National Science Foundation under grant agreement CRSII2_147659 (FUPSOL II). CCSRNIES’s research was supported by the Environment Research and Technology Development Fund (2-1303) of the Ministry of the Environment, Japan, and computations were performed on NEC-SX9/A(ECO) computers at the CGER, NIES. Wuhu Feng (NCAS) provided support for the TOMCAT simulations. Neal Butchart, Steven C. Hardiman, and Fiona M. O’Connor and the development of HadGEM3-ES were supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). Neal Butchart and Steven C. Hardiman also acknowledge additional support from the European Project 603557-STRATOCLIM under the FP7-ENV.2013.6.1-2 programme. Fiona M. O’Connor acknowledges additional support from the Horizon 2020 European Union’s Framework Programme for Research and Innovation CRESCENDO project under grant agreement no. 641816. Slimane Bekki acknowledges support from the European Project 603557-STRATOCLIM under the FP7-ENV.2013.6.1-2 programme and from the Centre National d’Etudes Spatiales (CNES, France) within the SOLSPEC project. Kane Stone and Robyn Schofield acknowledge funding from the Australian Government’s Australian Antarctic science grant program (FoRCES 4012), the Australian Research Council’s Centre of Excellence for Climate System Science (CE110001028), the Commonwealth Department of the Environment (grant 2011/16853), and computational support from National computational infrastructure INCMAS project q90. The CNRM-CM chemistry–climate people acknowledge the support from Météo-France, CNRS, and CERFACS, and in particular the work of the entire team in charge of the CNRM/CERFACS climate model.
Relationships
Is derived from: