Repository logo
 

CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology

Published version
Peer-reviewed

Type

Article

Change log

Authors

Cankorur-Cetinkaya, A 
Dias, JML 
Kludas, J 
Slater, NKH 
Rousu, J 

Abstract

Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).

Description

Keywords

Algorithms, Biological Evolution, Biotechnology, Computational Biology, Humans, Internet, Muramidase, Pichia, Recombinant Proteins, Software

Journal Title

Microbiology

Conference Name

Journal ISSN

1350-0872
1465-2080

Volume Title

163

Publisher

Microbiology Society
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/K011138/1)
European Commission (289126)
Biotechnology and Biological Sciences Research Council (BB/L004437/1)
EU 7th Framework Programme (BIOLEDGE Contract No: 289126 to S. G. O and J. R), BBSRC (BRIC2.2 to S. G. O. and N. K. H. S.), Synthetic Biology Research Initiative Cambridge (SynBioFund to D. D., A. C. C. and J. M. L. D.)
Relationships
Is supplemented by: