Simulating Lattice Gauge Theories within Quantum Technologies


Change log
Authors
Bañuls, MC 
Blatt, R 
Catani, J 
Celi, A 
Cirac, JI 
Abstract

Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented - a classical simulation approach -applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.

Description
Keywords
quant-ph, quant-ph, cond-mat.quant-gas, hep-lat, hep-th
Journal Title
European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics
Conference Name
Journal ISSN
0011-4626
1434-6079
Volume Title
74
Publisher
Kluwer Academic/Plenum Publishers
Sponsorship
Science and Technology Facilities Council (ST/P000681/1)
STFC (ST/T000694/1)