Impaired Nitric Oxide Mediated Vasodilation In The Peripheral Circulation In The R6/2 Mouse Model Of Huntington's Disease.
Change log
Authors
Abstract
Recent evidence shows that the Huntington's disease (HD) extends beyond the nervous system to other sites, including the cardiovascular system. Further, the cardiovascular pathology pre-dates neurological decline, however the mechanisms involved remain unclear. We investigated in the R6/2 mouse model of HD nitric oxide (NO) dependent and independent endothelial mechanisms. Femoral artery reactivity was determined by wire myography in wild type (WT) and R6/2 mice at 12 and 16 weeks of adulthood. WT mice showed increased endothelial relaxation between 12 and 16 weeks (Rmax: 72 ± 7% vs. 97 ± 13%, P < 0.05). In contrast, R6/2 mice showed enhanced endothelial relaxation already by 12 weeks (Rmax at 12w: 72 ± 7% vs. 94 ± 5%, WT vs. R6/2, P < 0.05) that declined by 16 weeks compared with WT mice (Rmax at 16w: 97 ± 13% vs. 68 ± 7%, WT vs. R6/2, P < 0.05). In WT mice, the increase in femoral relaxation between 12 and 16 weeks was due to enhanced NO dependent mechanisms. By 16 weeks of adult age, the R6/2 mouse developed overt endothelial dysfunction due to an inability to increase NO dependent vasodilation. The data add to the growing literature of non-neural manifestations of HD and implicate NO depletion as a key mechanism underlying the HD pathophysiology in the peripheral vasculature.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2045-2322
Volume Title
Publisher
Publisher DOI
Sponsorship
British Heart Foundation (None)
British Heart Foundation (None)
British Heart Foundation (None)
British Heart Foundation (None)
British Heart Foundation (None)