Repository logo

The transcription factor SoxD controls neuronal guidance in the Drosophila visual system.

Published version



Change log


Contreras, Esteban G 
Palominos, Tomás 
Glavic, Álvaro 
Sierralta, Jimena 


Precise control of neurite guidance during development is essential to ensure proper formation of neuronal networks and correct function of the central nervous system (CNS). How neuronal projections find their targets to generate appropriate synapses is not entirely understood. Although transcription factors are key molecules during neurogenesis, we do not know their entire function during the formation of networks in the CNS. Here, we used the Drosophila melanogaster optic lobe as a model for understanding neurite guidance during development. We assessed the function of Sox102F/SoxD, the unique Drosophila orthologue of the vertebrate SoxD family of transcription factors. SoxD is expressed in immature and mature neurons in the larval and adult lobula plate ganglia (one of the optic lobe neuropils), but is absent from glial cells, neural stem cells and progenitors of the lobula plate. SoxD RNAi knockdown in all neurons results in a reduction of the lobula plate neuropil, without affecting neuronal fate. This morphological defect is associated with an impaired optomotor response of adult flies. Moreover, knocking down SoxD only in T4/T5 neuronal types, which control motion vision, affects proper neurite guidance into the medulla and lobula. Our findings suggest that SoxD regulates neurite guidance, without affecting neuronal fate.



Animals, Drosophila Proteins, Drosophila melanogaster, Nerve Net, Neurites, Neuropil, SOXD Transcription Factors, Visual Pathways

Journal Title

Sci Rep

Conference Name

Journal ISSN


Volume Title



Springer Science and Business Media LLC
Wellcome Trust (103792/Z/14/Z)
Wellcome Trust (092096/Z/10/Z)
Cancer Research Uk (None)