Cutting cosmological correlators


Change log
Authors
Goodhew, Harry 
Jazayeri, Sadra 
Lee, Mang Hei Gordon 
Pajer, Enrico 
Abstract

Abstract: The initial conditions of our universe appear to us in the form of a classical probability distribution that we probe with cosmological observations. In the current leading paradigm, this probability distribution arises from a quantum mechanical wavefunction of the universe. Here we ask what the imprint of quantum mechanics is on the late time observables. We show that the requirement of unitary time evolution, colloquially the conservation of probabilities, fixes the analytic structure of the wavefunction and of all the cosmological correlators it encodes. In particular, we derive in perturbation theory an infinite set of single-cut rules that generalize the Cosmological Optical Theorem and relate a certain discontinuity of any tree-level n-point function to that of lower-point functions. Our rules are closely related to, but distinct from the recently derived Cosmological Cutting Rules. They follow from the choice of the Bunch-Davies vacuum and a simple property of the (bulk-to-bulk) propagator and are astoundingly general: we prove that they are valid for fields with a linear dispersion relation and any mass, any integer spin and arbitrary local interactions with any number of derivatives. They also apply to general FLRW spacetimes admitting a Bunch-Davies vacuum, including de Sitter, slow-roll inflation, power-law cosmologies and even resonant oscillations in axion monodromy. We verify the single-cut rules in a number of non-trivial examples, including four massless scalars exchanging a massive scalar, as relevant for cosmological collider physics, four gravitons exchanging a graviton, and a scalar five-point function.

Description
Keywords
paper, cosmological perturbation theory, inflation, quantum cosmology
Journal Title
Journal of Cosmology and Astroparticle Physics
Conference Name
Journal ISSN
1475-7516
Volume Title
2021
Publisher
IOP Publishing