Qubit-excitation-based adaptive variational quantum eigensolver

Change log
Arvidson-Shukur, David 
Armaos, Vasileios 

Molecular simulations with the variational quantum eigensolver (VQE) are a promising application for emerging noisy intermediate-scale quantum computers. Constructing accurate molecular ans"atze that are easy to optimize and implemented by shallow quantum circuits is crucial for the successful implementation of such simulations. Ans"atze are, generally, constructed as series of fermionic-excitation evolutions. Instead, we demonstrate the usefulness of constructing ans"atze with qubit-excitation evolutions'', which, contrary to fermionic excitation evolutions, obey qubit commutation relations''. We show that qubit excitation evolutions, despite the lack of some of the physical features of fermionic excitation evolutions, accurately construct ans"atze, while requiring asymptotically fewer gates. Utilizing qubit excitation evolutions, we introduce the qubit-excitation-based adaptive (QEB-ADAPT)-VQE protocol. The QEB-ADAPT-VQE is a modification of the ADAPT-VQE that performs molecular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions of qubit excitation operators. By performing classical numerical simulations for small molecules, we benchmark the QEB-ADAPT-VQE, and compare it against the original fermionic-ADAPT-VQE and the qubit-ADAPT-VQE. In terms of circuit efficiency and convergence speed, we demonstrate that the QEB-ADAPT-VQE outperforms the qubit-ADAPT-VQE, which to our knowledge was the previous most circuit-efficient scalable VQE protocol for molecular simulations.

Journal Title
Communications Physics
Conference Name
Journal ISSN
Volume Title
Nature Research
Publisher DOI
Publisher URL
All rights reserved
EPSRC (2148191)
EPSRC funding