Cerebral Microdialysate Metabolite Monitoring using Mid-infrared Spectroscopy.


No Thumbnail Available
Type
Article
Change log
Authors
Hutter, Dan 
Marco-García, Núria 
Gould, Emma 
Highland, Victoria H 
Abstract

The brains of patients suffering from traumatic brain-injury (TBI) undergo dynamic chemical changes in the days following the initial trauma. Accurate and timely monitoring of these changes is of paramount importance for improved patient outcome. Conventional brain-chemistry monitoring is performed off-line by collecting and manually transferring microdialysis samples to an enzymatic colorimetric bedside analyzer every hour, which detects and quantifies the molecules of interest. However, off-line, hourly monitoring means that any subhourly neurochemical changes, which may be detrimental to patients, go unseen and thus untreated. Mid-infrared (mid-IR) spectroscopy allows rapid, reagent-free, molecular fingerprinting of liquid samples, and can be easily integrated with microfluidics. We used mid-IR transmission spectroscopy to analyze glucose, lactate, and pyruvate, three relevant brain metabolites, in the extracellular brain fluid of two TBI patients, sampled via microdialysis. Detection limits of 0.5, 0.2, and 0.1 mM were achieved for pure glucose, lactate, and pyruvate, respectively, in perfusion fluid using an external cavity-quantum cascade laser (EC-QCL) system with an integrated transmission flow-cell. Microdialysates were collected hourly, then pooled (3-4 h), and measured consecutively using the standard ISCUSflex analyzer and the EC-QCL system. There was a strong correlation between the compound concentrations obtained using the conventional bedside analyzer and the acquired mid-IR absorbance spectra, where a partial-least-squares regression model was implemented to compute concentrations. This study demonstrates the potential utility of mid-IR spectroscopy for continuous, automated, reagent-free, and online monitoring of the dynamic chemical changes in TBI patients, allowing a more timely response to adverse brain metabolism and consequently improving patient outcomes.

Description
Keywords
Extracellular Fluid, Glucose, Humans, Lasers, Semiconductor, Microdialysis, Spectrophotometry, Infrared
Journal Title
Anal Chem
Conference Name
Journal ISSN
0003-2700
1520-6882
Volume Title
93
Publisher
American Chemical Society (ACS)
Rights
All rights reserved
Sponsorship
EPSRC (1651297)
Cambridge University Hospitals NHS Foundation Trust (CUH) (unknown)
Cambridge University Hospitals NHS Foundation Trust (CUH) (146281)
Engineering and Physical Sciences Research Council (EP/L015889/1)
EPSRC NIHR