Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium.


Type
Article
Change log
Authors
Rudolph, Anja 
Song, Minsun 
Brook, Mark N 
Milne, Roger L 
Abstract

BACKGROUND: Polygenic risk scores (PRS) for breast cancer can be used to stratify the population into groups at substantially different levels of risk. Combining PRS and environmental risk factors will improve risk prediction; however, integrating PRS into risk prediction models requires evaluation of their joint association with known environmental risk factors. METHODS: Analyses were based on data from 20 studies; datasets analysed ranged from 3453 to 23 104 invasive breast cancer cases and similar numbers of controls, depending on the analysed environmental risk factor. We evaluated joint associations of a 77-single nucleotide polymorphism (SNP) PRS with reproductive history, alcohol consumption, menopausal hormone therapy (MHT), height and body mass index (BMI). We tested the null hypothesis of multiplicative joint associations for PRS and each of the environmental factors, and performed global and tail-based goodness-of-fit tests in logistic regression models. The outcomes were breast cancer overall and by estrogen receptor (ER) status. RESULTS: The strongest evidence for a non-multiplicative joint associations with the 77-SNP PRS was for alcohol consumption (P-interaction = 0.009), adult height (P-interaction = 0.025) and current use of combined MHT (P-interaction = 0.038) in ER-positive disease. Risk associations for these factors by percentiles of PRS did not follow a clear dose-response. In addition, global and tail-based goodness of fit tests showed little evidence for departures from a multiplicative risk model, with alcohol consumption showing the strongest evidence for ER-positive disease (P = 0.013 for global and 0.18 for tail-based tests). CONCLUSIONS: The combined effects of the 77-SNP PRS and environmental risk factors for breast cancer are generally well described by a multiplicative model. Larger studies are required to confirm possible departures from the multiplicative model for individual risk factors, and assess models specific for ER-negative disease.

Description
Keywords
Adult, Aged, Breast Neoplasms, Case-Control Studies, Europe, Female, Gene-Environment Interaction, Genetic Predisposition to Disease, Humans, Logistic Models, Middle Aged, Polymorphism, Single Nucleotide, Risk Assessment, Risk Factors
Journal Title
Int J Epidemiol
Conference Name
Journal ISSN
0300-5771
1464-3685
Volume Title
47
Publisher
Oxford University Press (OUP)
Sponsorship
Cancer Research UK (16565)
Cancer Research Uk (None)
Cancer Research Uk (None)
European Commission Horizon 2020 (H2020) Societal Challenges (633784)
Cancer Research UK (A16563)
Cancer Research UK (A10118)
European Commission Horizon 2020 (H2020) Societal Challenges (634935)