The role of transcription factors in somatic cell nuclear reprogramming by eggs and oocytes

Change log
Wen, Ming-Hsuan 

Somatic cell nuclear reprogramming (SCNR) by eggs is a way to forcibly transform the nuclei of terminally differentiated somatic cells to an embryonic state and gain totipotency (Gurdon et al., 1958). Additionally, induced pluripotency is applied to transform identities of somatic cells to induced pluripotent stem cells by overexpression of combinatorial Yamanaka factors (iPS, Takahashi et al., 2006). Although both approaches aim to derive cells with highest plasticity, the mechanisms and differences between these procedures are not yet clear.

In my thesis, I used quantitative polymerase chain reaction (QPCR) and RNAseq plus 5-bromouridine 5’-triphosphate (BrUTP) pulldown to evaluate the transcriptional reprogramming by maternal factors and overexpressed transcription factors during SCNR by Xenopus oocytes, which are inactive in DNA replication and cell division.

QPCR measures changes in the steady-state levels of transcripts within 2 days of nuclear transfer to Xenopus oocytes (Oocyte-NT). Three pairs of Yamanaka factor homologs were tested by QPCR and Yamanaka factor homologues regulated similar sets of pluripotency genes in mouse embryonic fibroblasts (MEFs).

Pioneer factor mFoxA1 could not up-regulate most pluripotency genes and their binding targets of neurogenic genes in MEFs while pioneer factors are proposed to bind to their targets even if they may reside in inaccessible chromatin. This shows that the existence of other factors is needed at specified developmental stages. Hence, gene activation by transcription factors in the Oocyte-NT system requires not only corresponding binding on regulatory elements of linked genes but transcription cooperators to exert effective gene activation.

Additionally, RNA-seq plus BrUTP pulldown measures the extent to which oocytes change the transcriptional activity of nuclei transplanted to oocytes. Through RNA-seq plus BrUTP pulldown, I compared the reprogrammed transcriptomes of embryonic and somatic cells, including mouse embryonic stem cells, mouse embryonic fibroblasts and mouse myoblasts, to demonstrate the effects of maternal factors and overexpression of transcription factors on gene activities during SCNR by oocytes.

Importantly, I find that maternal factors of oocytes and the overexpression of transcription factors exert different strategies to reprogram somatic cells. Oocyte factors reprogram the donor cell nuclei to an oocyte-steady state except for the SCNR resistance genes and xklf2-HA overexpression enhances expression of reprogrammable genes and activates SCNR resistance genes.

Gurdon, John
Jullien, Jerome
Koziol, Magdalena
Transcription factors, Oocyte factors, Somatic cell nuclear reprogramming, Cell types, Gene activation, Gene resistance
Doctor of Philosophy (PhD)
Awarding Institution
University of Cambridge
Ministry of Education (Taiwan)