Multiscale Coupling and the Maximum of $${\mathcal {P}}(\phi )_2$$ Models on the Torus

Published version
Repository DOI

Change log
Authors
Barashkov, Nikolay 
Gunaratnam, Trishen S  ORCID logo  https://orcid.org/0000-0001-5227-1169
Hofstetter, Michael 
Abstract

jats:titleAbstract</jats:title>jats:pWe establish a coupling between the jats:inline-formulajats:alternativesjats:tex-math$${\mathcal {P}}(\phi )_2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mrow mml:miP</mml:mi> mml:msub mml:mrow mml:mo(</mml:mo> mml:miϕ</mml:mi> mml:mo)</mml:mo> </mml:mrow> mml:mn2</mml:mn> </mml:msub> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> measure and the Gaussian free field on the two-dimensional unit torus at all spatial scales, quantified by probabilistic regularity estimates on the difference field. Our result includes the well-studied jats:inline-formulajats:alternativesjats:tex-math$$\phi ^4_2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:msubsup mml:miϕ</mml:mi> mml:mn2</mml:mn> mml:mn4</mml:mn> </mml:msubsup> </mml:math></jats:alternatives></jats:inline-formula> measure. The proof uses an exact correspondence between the Polchinski renormalisation group approach, which is used to define the coupling, and the Boué–Dupuis stochastic control representation for jats:inline-formulajats:alternativesjats:tex-math$${\mathcal {P}}(\phi )_2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mrow mml:miP</mml:mi> mml:msub mml:mrow mml:mo(</mml:mo> mml:miϕ</mml:mi> mml:mo)</mml:mo> </mml:mrow> mml:mn2</mml:mn> </mml:msub> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>. More precisely, we show that the difference field is obtained from a specific minimiser of the variational problem. This allows to transfer regularity estimates for the small-scales of minimisers, obtained using discrete harmonic analysis tools, to the difference field.As an application of the coupling, we prove that the maximum of the jats:inline-formulajats:alternativesjats:tex-math$${\mathcal {P}}(\phi )_2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mrow mml:miP</mml:mi> mml:msub mml:mrow mml:mo(</mml:mo> mml:miϕ</mml:mi> mml:mo)</mml:mo> </mml:mrow> mml:mn2</mml:mn> </mml:msub> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> field on the discretised torus with mesh-size jats:inline-formulajats:alternativesjats:tex-math$$\epsilon > 0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mrow mml:miϵ</mml:mi> mml:mo></mml:mo> mml:mn0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> converges in distribution to a randomly shifted Gumbel distribution as jats:inline-formulajats:alternativesjats:tex-math$$\epsilon \rightarrow 0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mrow mml:miϵ</mml:mi> mml:mo→</mml:mo> mml:mn0</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>.</jats:p>

Description

Acknowledgements: TSG would like to thank Ajay Chandra for interesting discussions on the Polchinski equation and Romain Panis for useful comments. MH thanks Roland Bauerschmidt for discussing the project at early stages, as well as Benoît Dagallier for the helpful comments. NB, TSG, and MH would like to thank Hugo Duminil-Copin for hosting us at the Université de Genève in April 2022 to work on this project. TSG was supported by the Simons Foundation, Grant 898948, HDC. MH was partially supported by the UK EPSRC grant EP/L016516/1 for the Cambridge Centre for Analysis. NB is supported by the ERC Advanced Grant 741487 (Quantum Fields and Probability).

Keywords
4901 Applied Mathematics, 49 Mathematical Sciences
Journal Title
Communications in Mathematical Physics
Conference Name
Journal ISSN
0010-3616
1432-0916
Volume Title
404
Publisher
Springer Science and Business Media LLC
Sponsorship
ERC Advanced Grant (741487)
Simons Foundation (898948 HDC)
UK EPSRC (EP /L016516/1)