Repository logo
 

The Foundations of Infinite-Dimensional Spectral Computations


Type

Thesis

Change log

Authors

Abstract

Spectral computations in infinite dimensions are ubiquitous in the sciences. However, their many applications and theoretical studies depend on computations which are infamously difficult. This thesis, therefore, addresses the broad question,

“What is computationally possible within the field of spectral theory of separable Hilbert spaces?”

The boundaries of what computers can achieve in computational spectral theory and mathematical physics are unknown, leaving many open questions that have been unsolved for decades. This thesis provides solutions to several such long-standing problems.

To determine these boundaries, we use the Solvability Complexity Index (SCI) hierarchy, an idea which has its roots in Smale's comprehensive programme on the foundations of computational mathematics. The Smale programme led to a real-number counterpart of the Turing machine, yet left a substantial gap between theory and practice. The SCI hierarchy encompasses both these models and provides universal bounds on what is computationally possible. What makes spectral problems particularly delicate is that many of the problems can only be computed by using several limits, a phenomenon also shared in the foundations of polynomial root-finding as shown by McMullen. We develop and extend the SCI hierarchy to prove optimality of algorithms and construct a myriad of different methods for infinite-dimensional spectral problems, solving many computational spectral problems for the first time.

For arguably almost any operator of applicable interest, we solve the long-standing computational spectral problem and construct algorithms that compute spectra with error control. This is done for partial differential operators with coefficients of locally bounded total variation and also for discrete infinite matrix operators. We also show how to compute spectral measures of normal operators (when the spectrum is a subset of a regular enough Jordan curve), including spectral measures of classes of self-adjoint operators with error control and the construction of high-order rational kernel methods. We classify the problems of computing measures, measure decompositions, types of spectra (pure point, absolutely continuous, singular continuous), functional calculus, and Radon--Nikodym derivatives in the SCI hierarchy. We construct algorithms for and classify; fractal dimensions of spectra, Lebesgue measures of spectra, spectral gaps, discrete spectra, eigenvalue multiplicities, capacity, different spectral radii and the problem of detecting algorithmic failure of previous methods (finite section method). The infinite-dimensional QR algorithm is also analysed, recovering extremal parts of spectra, corresponding eigenvectors, and invariant subspaces, with convergence rates and error control. Finally, we analyse pseudospectra of pseudoergodic operators (a generalisation of random operators) on vector-valued lp spaces.

All of the algorithms developed in this thesis are sharp in the sense of the SCI hierarchy. In other words, we prove that they are optimal, realising the boundaries of what digital computers can achieve. They are also implementable and practical, and the majority are parallelisable. Extensive numerical examples are given throughout, demonstrating efficiency and tackling difficult problems taken from mathematics and also physical applications.

In summary, this thesis allows scientists to rigorously and efficiently compute many spectral properties for the first time. The framework provided by this thesis also encompasses a vast number of areas in computational mathematics, including the classical problem of polynomial root-finding, as well as optimisation, neural networks, PDEs and computer-assisted proofs. This framework will be explored in the future work of the author within these settings.

Description

Date

2020-06-16

Advisors

Hansen, Anders

Keywords

spectral problems, infinite dimensions, numerical analysis and scientific computation, solvability complexity index hierarchy, algorithms and foundations (boundaries) of computation

Qualification

Awarding Institution

University of Cambridge
Sponsorship
EPSRC (1804238)