Repository logo
 

Trapping plasmonic nanoparticles with MHz electric fields

cam.depositDate2022-05-06
cam.issuedOnline2022-05-17
cam.orpheus.counter1
cam.orpheus.successWed Jun 08 08:57:18 BST 2022 - Embargo updated
datacite.issupplementedby.urlhttps://doi.org/10.17863/CAM.84363
dc.contributor.authorHarlaftis, F
dc.contributor.authorKos, D
dc.contributor.authorLin, Q
dc.contributor.authorLim, KTP
dc.contributor.authorDumesnil, C
dc.contributor.authorBaumberg, JJ
dc.contributor.orcidHarlaftis, F [0000-0001-6653-402X]
dc.contributor.orcidKos, D [0000-0001-9738-3471]
dc.contributor.orcidLin, Q [0000-0001-7578-838X]
dc.contributor.orcidLim, KTP [0000-0002-9318-6232]
dc.contributor.orcidBaumberg, JJ [0000-0002-9606-9488]
dc.date.accessioned2022-05-06T23:30:37Z
dc.date.available2022-05-06T23:30:37Z
dc.date.issued2022
dc.date.updated2022-05-06T08:24:25Z
dc.description.abstract<jats:p>Dielectrophoresis drives the motion of nanoparticles through the interaction of their induced dipoles with a non-uniform electric field. We experimentally observe rf dielectrophoresis on 100 nm diameter gold nanoparticles in a solution and show that for MHz frequencies, the nanoparticles can reversibly aggregate at electrode gaps. A frequency resonance is observed at which reversible trapping of gold nanoparticle “clouds” occurs in the gap center, producing almost a 1000-fold increase in density. Through accounting for gold cores surrounded by a conducting double layer ion shell, a simple model accounts for this reversibility. This suggests that substantial control over nanoparticle separation is possible, enabling the formation of equilibrium nanoarchitectures in specific locations.</jats:p>
dc.identifier.doi10.17863/CAM.84221
dc.identifier.eissn1077-3118
dc.identifier.issn0003-6951
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/336802
dc.language.isoeng
dc.publisherAIP Publishing
dc.publisher.departmentDepartment of Physics
dc.publisher.urlhttp://dx.doi.org/10.1063/5.0091763
dc.rightsAll Rights Reserved
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserved
dc.subject40 Engineering
dc.subject4018 Nanotechnology
dc.subjectBioengineering
dc.subjectNanotechnology
dc.titleTrapping plasmonic nanoparticles with MHz electric fields
dc.typeArticle
dcterms.dateAccepted2022-05-05
prism.publicationNameApplied Physics Letters
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L027151/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/P029426/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (883703)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/L015978/1)
pubs.licence-display-nameApollo Repository Deposit Licence Agreement
pubs.licence-identifierapollo-deposit-licence-2-1
rioxxterms.typeJournal Article/Review
rioxxterms.versionAM
rioxxterms.versionofrecord10.1063/5.0091763

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
electrophoretic trapping revised clean.pdf
Size:
581.48 KB
Format:
Adobe Portable Document Format
Description:
Accepted version
Licence
http://www.rioxx.net/licenses/all-rights-reserved