Repository logo

Detection of Walls, Floors, and Ceilings in Point Cloud Data

Accepted version

Repository DOI



Change log


Anagnostopoulos, I 
PǍtrǍucean, V 
Vela, P 


The successful implementation of Building Information Models (BIMs) for facility management, maintenance and operation is highly dependent on the ability to generate such models for existing assets. Generating such BIMs typically requires laser scanning to acquire point clouds and significant post-processing to register the clouds, replace the points with BIM objects, assign semantic relationships and add any additional properties, such as materials. Several research efforts have attempted to reduce the post-processing manual effort by classifying the structural elements and clutter in isolated rooms. They have not however examined the complexity of a whole building. In this paper, we propose a robust framework that can automatically process the point cloud of an entire building, possibly with multiple floors, and classify the points belonging to floors, walls and ceilings.. We first extract the planar surfaces by segmenting the point cloud, and then we use contextual reasoning, such as height, orientation, relation to other objects, and local statistics like point density in order to classify them into objects. Experiments were conducted on a registered point cloud of an office building. The results indicated that almost all of the walls and floors/ceilings were correctly clustered in the point cloud.


This is the author accepted manuscript. The final version is available from the American Society of Civil Engineers via


BIM, As-is modeling, RANSAC, Classification, Point clouds

Journal Title

Construction Research Congress 2016: Old and New Construction Technologies Converge in Historic San Juan - Proceedings of the 2016 Construction Research Congress, CRC 2016

Conference Name

Construction Research Congress 2016

Journal ISSN

Volume Title


American Society of Civil Engineers
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreements n° 247586 ("BIMAutoGen") and n° 334241 ("INFRASTRUCTUREMODELS").