Repository logo
 

A pH-Induced Switch in Human Glucagon-like Peptide-1 Aggregation Kinetics.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Zapadka, KL 
Becher, FJ 
Uddin, S 
Varley, PG 
Bishop, S 

Abstract

Aggregation and amyloid fibril formation of peptides and proteins is a widespread phenomenon. It has serious implications in a range of areas from biotechnological and pharmaceutical applications to medical disorders. The aim of this study was to develop a better understanding of the mechanism of aggregation and amyloid fibrillation of an important pharmaceutical, human glucagon-like peptide-1 (GLP-1). GLP-1 is a 31-residue hormone peptide that plays an important role regulating blood glucose levels, analogues of which are used for treatment of type 2 diabetes. Amyloid fibril formation of GLP-1 was monitored using thioflavin T fluorescence as a function of peptide concentration between pH 7.5 and 8.2. Results from these studies establish that there is a highly unusual pH-induced switch in GLP-1 aggregation kinetics. At pH 8.2, the kinetics are consistent with a nucleation-polymerization mechanism for fibril formation. However, at pH 7.5, highly unusual kinetics are observed, where the lag time increases with increasing peptide concentration. We attribute this result to the formation of off-pathway species together with an initial slow, unimolecular step where monomer converts to a different monomeric form that forms on-pathway oligomers and ultimately fibrils. Estimation of the pKa values of all the ionizable groups in GLP-1 suggest it is the protonation/deprotonation of the N-terminus that is responsible for the switch with pH. In addition, a range of biophysical techniques were used to characterize (1) the start point of the aggregation reaction and (2) the structure and stability of the fibrils formed. These results show that the off-pathway species form under conditions where GLP-1 is most prone to form oligomers.

Description

Keywords

Amino Acid Sequence, Glucagon-Like Peptide 1, Humans, Hydrogen-Ion Concentration, Kinetics, Protein Aggregates, Protein Multimerization, Protein Structure, Quaternary

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

138

Publisher

American Chemical Society
Sponsorship
The research was funded by MedImmune and was carried out in the Chemistry Department and the Nanoscience Centre at the University of Cambridge, U.K., and MedImmune, Granta Park, Cambridge, U.K.